3.17.39 \(\int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx\) [1639]

3.17.39.1 Optimal result
3.17.39.2 Mathematica [C] (verified)
3.17.39.3 Rubi [A] (verified)
3.17.39.4 Maple [B] (verified)
3.17.39.5 Fricas [C] (verification not implemented)
3.17.39.6 Sympy [F]
3.17.39.7 Maxima [F]
3.17.39.8 Giac [F]
3.17.39.9 Mupad [F(-1)]

3.17.39.1 Optimal result

Integrand size = 30, antiderivative size = 441 \[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}+\frac {\sqrt {2} \sqrt {b^2-4 a c} (2 c d-b e) \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{3 c e \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}-\frac {4 \sqrt {2} \sqrt {b^2-4 a c} \left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{3 c e \sqrt {d+e x} \sqrt {a+b x+c x^2}} \]

output
4/3*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)+1/3*(-b*e+2*c*d)*EllipticE(1/2*((b+2 
*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b 
^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1 
/2)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/c/e/(c*x^2+b*x+a)^ 
(1/2)/(c*(e*x+d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)-4/3*(a*e^2-b*d*e+ 
c*d^2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/ 
2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2 
))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*(c*(e* 
x+d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)/c/e/(e*x+d)^(1/2)/(c*x^2+b*x+ 
a)^(1/2)
 
3.17.39.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 28.15 (sec) , antiderivative size = 933, normalized size of antiderivative = 2.12 \[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\frac {\sqrt {d+e x} \left (8 (a+x (b+c x))+\frac {(d+e x) \left (-\frac {4 e^2 (-2 c d+b e) \sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}} (a+x (b+c x))}{(d+e x)^2}-\frac {i \sqrt {2} (2 c d-b e) \left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) \sqrt {\frac {-2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}+2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (d-e x)}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {\frac {2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}-2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (-d+e x)}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} E\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right )|-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt {d+e x}}+\frac {i \sqrt {2} \left (b^2 e^2-4 a c e^2+2 c d \sqrt {\left (b^2-4 a c\right ) e^2}-b e \sqrt {\left (b^2-4 a c\right ) e^2}\right ) \sqrt {\frac {-2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}+2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (d-e x)}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {\frac {2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}-2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (-d+e x)}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right ),-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt {d+e x}}\right )}{c e^2 \sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}\right )}{6 \sqrt {a+x (b+c x)}} \]

input
Integrate[((b + 2*c*x)*Sqrt[d + e*x])/Sqrt[a + b*x + c*x^2],x]
 
output
(Sqrt[d + e*x]*(8*(a + x*(b + c*x)) + ((d + e*x)*((-4*e^2*(-2*c*d + b*e)*S 
qrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*( 
a + x*(b + c*x)))/(d + e*x)^2 - (I*Sqrt[2]*(2*c*d - b*e)*(2*c*d - b*e + Sq 
rt[(b^2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d* 
e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - e*x))/((2*c*d - b*e + Sqrt[(b 
^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 
2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e + 
 Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[(c 
*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + 
e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 
 - 4*a*c)*e^2]))])/Sqrt[d + e*x] + (I*Sqrt[2]*(b^2*e^2 - 4*a*c*e^2 + 2*c*d 
*Sqrt[(b^2 - 4*a*c)*e^2] - b*e*Sqrt[(b^2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d 
*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*( 
d - e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e 
^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + 
 b*e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Ell 
ipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqr 
t[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a* 
c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x]))/(c*e^2 
*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2...
 
3.17.39.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 441, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1236, 27, 1269, 1172, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {2 \int \frac {c (b d-2 a e+(2 c d-b e) x)}{2 \sqrt {d+e x} \sqrt {c x^2+b x+a}}dx}{3 c}+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {b d-2 a e+(2 c d-b e) x}{\sqrt {d+e x} \sqrt {c x^2+b x+a}}dx+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {1}{3} \left (\frac {(2 c d-b e) \int \frac {\sqrt {d+e x}}{\sqrt {c x^2+b x+a}}dx}{e}-\frac {2 \left (a e^2-b d e+c d^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {c x^2+b x+a}}dx}{e}\right )+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

\(\Big \downarrow \) 1172

\(\displaystyle \frac {1}{3} \left (\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \int \frac {\sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {4 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \int \frac {1}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}} \sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}\right )+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {1}{3} \left (\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) \int \frac {\sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {4 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}\right )+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {1}{3} \left (\frac {\sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (2 c d-b e) E\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {4 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}\right )+\frac {4}{3} \sqrt {d+e x} \sqrt {a+b x+c x^2}\)

input
Int[((b + 2*c*x)*Sqrt[d + e*x])/Sqrt[a + b*x + c*x^2],x]
 
output
(4*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/3 + ((Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2 
*c*d - b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*Ell 
ipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt 
[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*e* 
Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x + c*x 
^2]) - (4*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e 
*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^ 
2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^ 
2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4* 
a*c])*e)])/(c*e*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]))/3
 

3.17.39.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 1172
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sy 
mbol] :> Simp[2*Rt[b^2 - 4*a*c, 2]*(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2 
)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*e - e 
*Rt[b^2 - 4*a*c, 2])))^m))   Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2* 
c*d - b*e - e*Rt[b^2 - 4*a*c, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^ 
2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[m^2, 1/4]
 

rule 1236
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 
1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1 
)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m 
*(c*e*f + c*d*g - b*e*g) + e*(p + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 
3.17.39.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(795\) vs. \(2(383)=766\).

Time = 1.44 (sec) , antiderivative size = 796, normalized size of antiderivative = 1.80

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+b x +a \right )}\, \left (\frac {4 \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}{3}+\frac {2 \left (\frac {b d}{3}-\frac {2 a e}{3}\right ) \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{\sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}+\frac {2 \left (-\frac {b e}{3}+\frac {2 c d}{3}\right ) \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \left (\left (-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )+\frac {\left (-b +\sqrt {-4 a c +b^{2}}\right ) F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{2 c}\right )}{\sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}}\) \(796\)
risch \(\text {Expression too large to display}\) \(1061\)
default \(\text {Expression too large to display}\) \(1854\)

input
int((2*c*x+b)*(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
((e*x+d)*(c*x^2+b*x+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)*(4/3*(c*e* 
x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)+2*(1/3*b*d-2/3*a*e)*(d/e-1/2*(b 
+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2) 
*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^ 
(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c 
))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*EllipticF(((x+d/e 
)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/ 
2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))+2*(-1/3*b*e+2/3*c*d)*( 
d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2)) 
/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a*c+b^2) 
^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*c+b^2 
)^(1/2))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*((-d/e- 
1/2/c*(-b+(-4*a*c+b^2)^(1/2)))*EllipticE(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2) 
^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4 
*a*c+b^2)^(1/2))))^(1/2))+1/2/c*(-b+(-4*a*c+b^2)^(1/2))*EllipticF(((x+d/e) 
/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2 
))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))))
 
3.17.39.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 418, normalized size of antiderivative = 0.95 \[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\frac {2 \, {\left (6 \, \sqrt {c x^{2} + b x + a} \sqrt {e x + d} c^{2} e^{2} - {\left (2 \, c^{2} d^{2} - 2 \, b c d e - {\left (b^{2} - 6 \, a c\right )} e^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) - 3 \, {\left (2 \, c^{2} d e - b c e^{2}\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right )\right )}}{9 \, c^{2} e^{2}} \]

input
integrate((2*c*x+b)*(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas 
")
 
output
2/9*(6*sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)*c^2*e^2 - (2*c^2*d^2 - 2*b*c*d* 
e - (b^2 - 6*a*c)*e^2)*sqrt(c*e)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d* 
e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^ 
2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c* 
d + b*e)/(c*e)) - 3*(2*c^2*d*e - b*c*e^2)*sqrt(c*e)*weierstrassZeta(4/3*(c 
^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^ 
2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), we 
ierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), - 
4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a 
*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))))/(c^2*e^2)
 
3.17.39.6 Sympy [F]

\[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\int \frac {\left (b + 2 c x\right ) \sqrt {d + e x}}{\sqrt {a + b x + c x^{2}}}\, dx \]

input
integrate((2*c*x+b)*(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)
 
output
Integral((b + 2*c*x)*sqrt(d + e*x)/sqrt(a + b*x + c*x**2), x)
 
3.17.39.7 Maxima [F]

\[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\int { \frac {{\left (2 \, c x + b\right )} \sqrt {e x + d}}{\sqrt {c x^{2} + b x + a}} \,d x } \]

input
integrate((2*c*x+b)*(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima 
")
 
output
integrate((2*c*x + b)*sqrt(e*x + d)/sqrt(c*x^2 + b*x + a), x)
 
3.17.39.8 Giac [F]

\[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\int { \frac {{\left (2 \, c x + b\right )} \sqrt {e x + d}}{\sqrt {c x^{2} + b x + a}} \,d x } \]

input
integrate((2*c*x+b)*(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")
 
output
integrate((2*c*x + b)*sqrt(e*x + d)/sqrt(c*x^2 + b*x + a), x)
 
3.17.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(b+2 c x) \sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx=\int \frac {\left (b+2\,c\,x\right )\,\sqrt {d+e\,x}}{\sqrt {c\,x^2+b\,x+a}} \,d x \]

input
int(((b + 2*c*x)*(d + e*x)^(1/2))/(a + b*x + c*x^2)^(1/2),x)
 
output
int(((b + 2*c*x)*(d + e*x)^(1/2))/(a + b*x + c*x^2)^(1/2), x)